Text Cube: Computing IR Measures for Multidimensional Text Database
Analysis

Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, Bo Zhao
Department of Computer Science

University of Illinois at Urbana-Champagin, USA
{xidelin2, bding3, hanj, feidazhu, bozhao3} @uiuc.edu

Abstract

Since Jim Gray introduced the concept of "data cube”
in 1997, data cube, associated with online analytical pro-
cessing (OLAP), has become a driving engine in data ware-
house industry. Because the boom of Internet has given rise
to an ever increasing amount of text data associated with
other multidimensional information, it is natural to propose
a data cube model that integrates the power of traditional
OLAP and IR techniques for text. In this paper, we propose
a Text-Cube model on multidimensional text database and
study effective OLAP over such data. Two kinds of hier-
archies are distinguishable inside: dimensional hierarchy
and term hierarchy. By incorporating these hierarchies, we
conduct systematic studies on efficient text-cube implemen-
tation, OLAP execution and query processing. Our perfor-
mance study shows the high promise of our methods.

1 Introduction

Data Cube has been proved a powerful model to
efficiently handle Online Analytical Processing (OLAP)
queries on large data collections that are multi-dimensional
in nature. An OLAP data cube organizes data with categor-
ical attributes (called dimensions) and summary statistics
(called measures) from lower conceptual levels to higher
ones. By offering users the ability to access data collections
of any dimension subsets (called cuboid), a data cube pro-
vides the ease and flexibility for data navigation by different
granularity levels and from different angles, without losing
the overall picture of the data in its integrity.

Traditional OLAP cube studies[8, 1] focus on numeric
measures, such as count, sum and average. Recent years
have seen OLAP cubes extended to new domains, such as
OLAP on graphs[7], sequences[6], spatial data[3] and mo-
bile data[5]. In view of the boom of Internet and the ever in-
creasing business intelligence applications, a domain of par-
ticular interest is that of text data. In this paper, we propose
Text Cube, a general cube model on text data, to summarize
and navigate structured data together with unstructured text

data for efficient IR applications in such a way that these
two kinds of information can mutually enhance knowledge
discovery and data analysis.

Supposing a collection of documents DOC is stored in
a database with dimensions, we are given (i) an IR query ¢
(i.e. a set of terms/key), and (ii) constraints on dimensions,
to retrieve relevant documents. Following is an example.

Example 1.1 Consider a database of user reviews about
some products (Table 1(a)), which consists of four dimen-
sions M (Model), P (Price), T (Time), and S (Score). Each
row stores a user review, d; € DOC, with values of these
four dimensions specified. Note we treat dimensions Price
and Score as categorical dimensions: let pl = cheap, p2
= median, p3 = high, s1 = negative, and s2 = positive.
An IR query q (“Dell notebook fast CPU”) seeks reviews
on Dell notebooks with fast CPUs. With database support,
a more complicated IR query could be (¢ = “Dell notebook
fast CPU”: P = median, T > 2006), specifying constraints
on two dimensions, “median price” and “later than 2006”.

The following contributions can be claimed in this paper.

1. A new data cube model called fext cube is proposed,
with term hierarchy, a new concept hierarchy for se-
matic navigation of the text data, defined and being
integrated into the text cube by two new OLAP opera-
tions: pull-up and push-down.

2. Two important measures are supported in text cube
upon which other IR techniques and applications can
be efficiently built. We studied their efficient aggrega-
tion and storage.

3. Methods are worked out for optimal query processing
in a partially materialized text cube, and algorithms
are designed for partially materializing the text cube
that greatly reduces the storage cost while bounding
the query processing cost.

4. Experimental results on real Dell customer review
datasets have been given to illustrate both the effi-
ciency and effectiveness of our text cube model.

(a) A 4-Dimensional Text Database

(b) 2-D Cuboid MS

‘ Dimensions H Text Data ‘ Relevant Aggregated IR
M P T (Y/M/D) 3 DOC Dimensions Text Data Measure
(Model) | (Price) (Time) (Score) (Documents) [Mm[] s D [F(D) |
ml pl 2007/07/01 sl dy ={wl, wl, w2, w6, w8} ml sl {d:}
ml pl 2007/07/01 s2 dy = {wl, w3, w6, w6, w7} ml s2 {d2,ds}
ml p2 2007/08/01 s2 ds = {w2, w3, w6, wb } m2 s2 {ds}
m2 p2 2007/08/01 s2 dy = {w4, w5, wo, w7} m2 sl {ds,ds}
m2 p3 2008/06/01 sl de = {w4, w4, w5, w8}

Table 1. The Original Text Database and its 2-D Cuboid Ms

The remaining part is organized as: Section 2 introduces
the whole text cube model. Section 3 discusses computa-
tional issues, including online query processing and par-
tially materialization. Section 4 gives experiments. Finally,
Section 5 concludes this paper.

2 Text Cube: Hierarchy and Measure

Section 2.1 is the overview of the whole model. Sec-
tion 2.2 introduces two types of concept hierarchies. Sec-
tion 2.3 discusses essential IR measures supported.

2.1 Model Overview

The capacity of fext cube to facilitate IR techniques on
multidimensional text data is based on the following fea-
tures:

e A multidimensional data model: Users have a flexi-
bility to aggregate measures for any subsets of dimen-
sions. Two types of concept hierarchies are supported:

1. dimension hierarchy: it is the same as tradi-
tional data cubes.

2. Term hierarchy: newly introduced in text cube
is a hierarchy to specify the semantic levels of
and relationships among text terms.

e Measures supported for efficient IR: For aggregated
text data, two measures, ferm frequency and inverted
index, are materialized. Consequently, IR queries on
aggregated text data can be efficiently answered.

A document collection DOC is stored in a n-dimensional
database DB = (A1, As, ..., A,,DOC). Each row of
DOC is in the form of (ay,as,...,an,d), where a; € A;
is a dimension value for A; and d € DOC. Supposing

W = {w1,ws, ..., wpy,} is the set of terms in DOC, a doc-
ument d is a multiset of W. !
A cell is in the form of (a1, az,...,a, : F(D)) (a; €

A; U{x}. a; = * means text data is aggregated on dimen-
sion A;. D C DOC is the document subset whose dimen-
sion values match to ay,as,...,a,. F(D) is IR measures
of D. A cuboid is a set of cells with the same inquired di-
mensions, denoted by (a1, as, ..., ay : F(D)) (a; € {7, *}.

'Our cube model and algorithms can be easily extended for the text
database, where each row contains more than one document.

a; = 7 means A; is an inquired dimension). A cuboid with
m inquired dimensions is a m-D cuboid. A subcube is a
subset of cells in a cuboid, in the form of (a1, aq,...,a, :
F(D)) (a; € A;U{x}U{?}). A cell, a cuboid, or a subcube
is also referred to as (a1, ag, . . . , ay : D) when the measure
is not specified. Note that the aggregated text data D is not
computed(stored) in cells of a text cube. Instead each cell
stores the IR measure of the aggregate text data.

Example 2.1 Table I has six documents with term set VV =
{wl,w2,...,w8}. The cuboid MS (?,x,*,7 : F(D)) is
shown in Table 1(b). Subcube (m1,x,x,? : F(D)) contains
the first two cells. In the cell (m1, *,x,s2 : F(D)) of cuboid
MS, two documents are aggregated in D = {ds, ds}. In the
cell (a2,*,%,d1 : F(D)), D = {d5,ds}. A simple measure
is, for example, F = CNT, the number of documents. Then
in the cell (m1,*,%,s82: CNT(D)), CNT(D) = 2.

2.2 Hierarchy and Operations

2.2.1 Dimension Hierarchy

The same as traditional data cubes, each dimension may
consist of multiple attributes, and be organized as a tree or
a DAG, called dimension hierarchy. There are four related
OLAP operations Roll-up, Drill-down, Slice and Dice [4].

2.2.2 Term Hierarchy

Term hierarchy T is built upon a term set WV to specify
terms’ semantic levels and relationship. Each node v in 7 is
called a generalized term, represented by a subset of terms,
ie.,, v € W. In particular, each leaf is a size-1 set {w;}
containing one term w; € W, and the root of 7 is the set of
all terms, W. Let chd(v) denote the set of v’s child nodes,
des(v) denote the set of v’s descent nodes, and par(v) de-
note v’s parent node.

Example 2.2 Term hierarchy T = {v1,...,v14} (Fig-
ure 1) is built upon the term set W = {w1, ... ,w8}. For ex-
ample, the generalized term v9 = {Memory, CPU, Disk}
represents “internal device”.

Term level and related OLAP operations A term level is
a subset of nodes in 7, denoted by L C 7. The set of all
leaf nodes, denoted by Ly, is a term level called base level.
The set Liop = {Uroot } is a term level called top level. Other
term levels can be generated by:

v14={w1, w2, w3, w4, w5, w6, w7, w8}

v12={w1l, w2, w3, w4, w5} v13={w6, w7, w8}

vo={wl, w2, w3} v10={ w4, w5} v11={w6, w7}

ANA

vi={wl} v2={w2} v3={w3} v4={w4} v5={w5} v6={w6} v7={w7} v8={w8}
{Memory} {CPU} ({Disk} {Mouse} {Keyboard} {Well} {Excellent} {Bad}

Figure 1. Term Hierarchy 7

e Pull-up L on v: Given term level L and generalized
term v € L, add v’s parent node v = par(v) in and
delete u’s descent nodes des(u) from L. The result is
a higher term level L.

e Push-down L on v: the reverse of push-down.

Example 2.3 In Figure 1, Ly = {v1,v2,... v8}.
Pull-up Ly on vl — Ly = {v9,v4,v5,v6,v7,v8}.
Push-down Loy, = {v14} onv1l4d — L, = {v12,v13}.

2.3 Measures Suppported for IR
Which measures are essential for IR tasks? After a sur-
vey, we select term frequency TF and inverted index 1V.
Let des’(w) = w U des(w). For term w and document
d, tfy a4 denotes the total times terms in des’(w) appear in
d, TF(w, D) = Y {tfw,a} denotes the total times terms in
deD
des'(w) appearin D, and IV(w, D) = {(d, tfw.a) | t fuw.a >
0} denotes the list of documents in D containing terms in
des’(w). Suppose D is the aggregated text data for a cuboid
celland W = {wy,wa, ..., wsy} is the set of all terms, term
frequency vector is an m-dimensional vector

TF(D) = (TF(wy, D), TF(wa, D), ..., TF(w,, D)) (1)
and inverted index is an m-dimensional vector
V(D) = (IV(wy, D), IV(ws, D), ..., IV(wy, D)). (2)
Example 2.4 See Table 1(a). Cell (m1,x,*,s2 : TF(D))
has D = {dy,ds} and TF(D) = (1,1,2,0,0,4,1,0) (wl
appears 1 time, w2 appears 1 time, ...); cell (m1,*,*,s2 :
V(D)) has \V(ws, D) = {(d2,2),(ds,2)} (w6 appear in
do and d3 both for two times).

3 Text Cube: Computational Aspects

In this section, we first discuss how to compute the full
cube and analyze the storage cost in Section 3.1. It will
be shown although our two measures are distributive, the
storage cost is prohibitive. So in Section 3.2, we focus on
how to process online queries in a partially materialized
text cube, and in Section 3.3, we introduce how to optimize
the storage size of partially materialized text cubes while
the query processing cost is bounded.

3.1 Full Cube Computation

The basic algorithm to do full text cube computation is:
first compute all cells in n-D cuboids; then compute all cells

in ¢-D cuboids from cells in (i — 1)-D cuboids. The key
points of this algorithm are: (i) how much the storage cost
is; and (ii) how to aggregate cells in a r-D cuboid into a cell
ina (r — 1)-D cuboid without looking the original database.

Storage cost. If term set is W = {wy, wa, ..., Wy}, O(m)
space is required by TF for each cell, and O(m/|D|) space
is required by |V for a cell aggregating document set D.
Aggregation of TF and IV. The two measures under our
consideration, TF and |V, are distributive [2].

Let (a1,a2,...,a, : D) be a cell in a (r — 1)-D
cuboid. W.o.l.g. suppose a, = x* and A, has k dis-

tinct values a;”, af), ce a;’“) c A,. ansider k cells
in a r-D cuboid, namely, (a17a27...,a53) : D;) for
j=1,2,...,k. We show TF(D) and IV(D) can be effi-

ciently computed from TF(D;), TF(D2), ..., TF(Dy) and
IV(D1),IV(Ds), ..., IV(Dy), respectively.

Suppose L = {v1,vs,...,v,}. Because we have D =
Uj<icp Diand D; (N D; = @ fori # j, TF(D) and IV(D)
can be computed as follows.

TF(vi,D) = Y TF(v;,D;), fori=1,2,...m, (3)
1<j<k
and TF(D) = (TF(v1, D), TF(va, D), ..., TF(vy, D)).

Vi, D)= |J N(vi,D;), fori=1,2,...m, (4)
1<5<k
and IV(D) = (IV(v1, D), IV(va, D), ..., IV (vpn, D)).

To sum up, we can conclude that the time required to
compute TF and IV through aggregation is linear w.r.t. their
sizes, and these two measures are distributive.

3.2 Query Processing in Partially
Materialized Cube

Although TF and IV can be efficiently aggregated, they
consume a huge amount of space if materialized for all cells.
Our solution is to recompute a subset of cells instead all
cells, called partially materialized. We introduce how to
process OLAP queries in a text cube where only a subset of
cells are precomputed; and in Section 3.3, we discuss how
to choose this subset.

Two types of OLAP queries: (1) point query (seek a cell)
(2) subcube query (seek a subcube). Since (2) can be pro-
cessed by calling (1) as a subroutine, we will focus on (1).

Formally, in a n-dimensional text database DB =
(A1, Aa, ..., A, DOC), A point query is in the same form
asacell,ie., (a1, as,...,a, : F(D)), where a; € A;U{x}.

For a point query on a cell which is not precomputed,
there are different ways of choosing the set of precomputed
ones to obtain the result. To formally define the query pro-
cessing problem, we first need to introduce the decision
space and the cost model.

Decision space. Let us first explore what kind of choices
we have to aggregate precomputed cells to process a point

query. Given a point query, @ = (a1, as,...,a, : F(D)),
w.o.l.g. suppose a; = x fori = 1,2,...,n’ and a; € A;
fori = n' +1,n +2,...,n. We have n’ choices; i.e.

aggregating cells in one of the following sets:
S1 ={(a,aq,.. an :F(D))|ae€ Ay AND # o},

<5 Ansy -

Spr ={(a1,a2,...,a,...,a, : F(D)) | a € Ay AND # &}
on one of dimensions A, As, ..., A, , respectively. Sup-
pose we choose to aggregate cells in S7 on A4, for each cell
in Sy, (a, ag, .. ., ayp : F(D)), if it is precomputed,
it can be directly retrieved for processing @; otherwise, re-
cursively, to obtain this cell, we have n’ —1 choices to aggre-
gating other cells on one of dimensions Ay, As, ..., A, .

Cost model. Given a point query (), the cost of processing
@ with a set of precomputed cells, C, is |C| (i.e. the number
of precomputed cells we need to access).

s Qpty ..

Query processing problem. Since in the decision space,
we have different choices of the set of precomputed cells
for processing @, the query processing problem is:

e Given a point query @, choose the minimum number
of precomputed cells for processing Q).

3.2.1 Optimal Query Processing
Now we focus on the query processing problem. We use dy-
namic programming to compute the optimal cost/decision.
In a n-dimensional text cube, we use @ =
{a1,a9,...,a, : F(D)} to denote both a point query and
a cell. For each a; = *, we use ();_,, to denote a point
query/cell, which replace a; = * with a € A;; i.e.
Qi—>a = {al, . . F(D)} (5)
In our cost model, once the precomputed cells are fixed,
for each cell with value * in n’ dimensions, there is an “op-
timal” choice among the n’ possible ones. This is because
the optimal choice for @);_., is irrelevant to the one for @
(i.e. the optimal substructure in dynamic programming).
So, let cost(Q) be the optimal cost for processing Q,
i.e., the minimum number of precomputed cells needed to
be accessed, we have the following recursive relationship:

cost(R) = min { Z cost(QiHa)} . (6)

iia; =%

a€A;

<y Qi—1, 0y Qi 15+ -+, An

Note for a precomputed cell @, as in our cost model, define

cost(Q) =1 (Q is a precomputed cell). @)
If Q is empty, i.e., D = &, we can avoid accessing it, so
cost(Q) =0 (Q is empty). (8)

If the precomputed cells in a text cube are fixed, the optimal
cost/decision for processing each () can be computed from
(6)-(8). Recall in our decision space, for a point query)
with x in n’ dimension, we have n’ choices to obtain it (each

choice is to aggregate {Q; ., | a € A;} on dimension A; if
a; = *). So we take the minimum cost over all choices as in
(6). But it is important to notice this process is recursively
repeated: if a cell, say (QQ;_,4, is not precomputed, we need
to find the set of precomputed ones to obtain ;-

Let desc(Q) be the optimal choice of the aggregating di-
mension for a cell @ that is not precomputed. From (6),

S cost(Qiy—a).

G«E-Az‘o
©)

For each cell), cost(Q)) and desc(Q)) can be precom-
puted from the recursive relationship (6)-(8), and stored in
the text cube (as they only consume O(1) space). When
a point query (Q arrives online, it can be processed by first
tracing desc(Q) to get a set of precomputed cells, C, and
then aggregating them to obtain ()’s measure (TF or IV). C
can be gotten using algorithm Process.

., an : F(D)))

1: if Q is precomputed then C — C U {Q};

2: else

3: dp « desc(Q);
4

5

desc(Q) = 1ip iff a;, = xAcost(Q) =

Process(Q = (a1, as, . .

for each a € A;, do
if Q;,— is nonempty then Process(Q;,—.4);
The following theorem formalized the correctness of our
algorithms, but we omit the proof for the space limit.

Theorem 1 Given a point query Q) in a partially material-
ized text cube, the optimal cost cost(Q) and choice desc(Q)
for processing QQ can be computed from (6)-(9) using dy-
namic programming algorithm.

From the optimal choice desc(-) of each cell, the set of
precomputed cells needed to be aggregated to obtain Q’s
measure can be computed with algorithm Process.

3.3 Optimizing Cube Materialization with
Bounded Query Processing Cost

Cube materialization problem. The remaining question is
how to choose a subset of cells to precompute, s.t.
(i) Any point query can be answered by aggregating

(some) precomputed cells.

(ii) For any point query @, its optimal processing cost
cost(Q) is bounded by a user-specified threshold A.

(iii) The storage cost (i.e. the total number of precomputed
cells) is as small as possible.

For a n-dimensional text database (A1, As, ..., A, DOC),
from (i), all cells in the n-D cuboid must be precomputed,
because a cell in the n-D cuboid cannot be obtained by
aggregating other cells. On the other hand, if all cells in
the n-cuboid are precomputed, then any point query can be
answered, by aggregating a subset of these n-cuboid cells.
Given a threshold A, in the following part, we focus on how
to reduce the storage cost while promising the optimal cost

of processing any point query is bounded by A. We de-
fine a partial order, <, on the set of all nonempty cells in
a text cube. Two cells Q = (a1, as2,...,a, : D) < Q' =
(a},ah,...,a, : D")iff “a} € A; = a) = a;”. Consider a
topological sort based on this partial order of all nonempty
cells, Q. Q@ ..., QW) where N is the total number of
cells, we have Q1) < QU) = 4 < j.

Recall the definition of ;.. in (5), we must have
Qi—q = @ according to the definition of “<”. So we must

have the following property.

Property 1 Suppose Qi = QU) and Q = Q™) in the
topological sort, we must have j < k.

Our method to partially materialized a cube works as fol-
lows: linearly scan the topological sort from Q(*) to QV);
in this process for j = 1,2,..., N, from Property 1,
we can correctly compute cost(Q)) and desc(QV)) ; if
cost(Q)) > A for some j, we precompute and store cell
QU) in the text cube, and let cost(Q/)) = 1. In this way,
after all cells are scanned, the optimal cost cost(-) and de-
cision desc(-) are computed for each cell, and cost(Q) for
any query () is no larger than A.

The intuition of why our method can reduce the stor-
age cost is: we precompute cells as later as possible in the
topological order. If the processing cost cost(Q) of a cell
@ does not exceed the threshold A, we delay its computa-
tion to the online query processing, because it can be aggre-
gated from the already precomputed ones with processing
cost no more than A. Therefore, we reduce the redundancy
in the precomputation. Given Q) Q) ..., Q™) in a n-
dimensional text cube and A, we formalize our cube mate-
rialization method as algorithm GreedySelect.
GreedySelect(A)

1: for j =1to N do

2 if QY is a n-D cuboid then

3 precompute QU); cost(QU)) « 1;

4: else ‘

5 cost(Q(j)) « min {ZaeAi cost(Qgﬁa)};
6: desc(Q1)) — argmin {ZaeAi cost(QEﬁa)};
7: if COSt(Q(j)) > A then

8: precompute Q(7); cost(QU)) «— 1;

Theorem 2 The optimal query-processing cost cost(Q)
and choice desc(Q) for every cell Q is correctly computed
in GreedySelect, in O(N - max;{|4;|} + Piime) time,
where Piime is the time for precomputing cells.

Although we cannot promise GreedySelect minimizes
the storage cost of a partially materialized text cube, s.t.
conditions (i) and (ii) in cube materialization problem are
satisfied, we will show the effectiveness of GreedySelect
in our performance study (Section 4.1). Minimizing the
storage cost and its hardness are open questions.

4 Experimental Studies

We did experiments on a real dataset. GreedySelect
partially materializes text cubes; Process processes online
queries; Basic answers queries without the support of text
cube. Algorithms are implemented in C++ 2005 and SQL
2005, conducted in 3.40GHz CPU and 1G memory PC.

Dataset The dataset is the complete set of customer re-
views on Dell laptops crawled from www.dell.com before
2008/05/15, which contains 2,013 records with 232,924 text
words. We extracted 26 attributes, among which we use 14
categorical attributes dimensions, and customer comments
on pros and cons as the documents.

4.1 Performance Study

Exp-1 (Storage cost). We report the storage costs while
varying (i) the threshold of query processing cost A in
GreedySelect and (ii) the number of dimensions of our
text cube. When the number of dimensions is 14, there are
16,384 cuboids and 1,269,043,200 cells in the text cube.

In Figure 2, the three curves, Cube20, Cube60, and
Cubel00, shows the storage costs of text cube when A =
20, 60, and 100, respectively.

In principle, the smaller A is, the more cells need to be
precomputed, and the larger the storage cost is. This fact
can be verified by Figure 2, since Cube20 is always the top
curve, and CubelQ0 is always the bottom one. Also, Fig-
ure 2 shows that the storage cost increases as the number of
dimensions increases. But even when the number of dimen-
sions reaches 14, the storage cost is no more than 70(MB).

Exp-2 (query processing time). We compare the process-
ing time of Process with the one of Basic. We conclude
that a tradeoff between storage cost and query processing
time can be controled it tuning A in GreedySelect.

In Figure 3(a), the average query processing time is
curved as a function of the number of aggregated docu-
ments (i.e. if the corresponding cell of a point query is
(a1,az,...,a, : D), this quantity is |D|). It is shown
Basic increases approximately linearly w.r.t. |D|; but
Cube20, Cube60, and Cubel00 is shorter than Basic when
|D| is large, and is independent of | D|. Actually, it vibrates
as | D| increases. The reason can be explained by the behav-
ior of GreedySelect: at first, all base cells (cells in n-D
cuboids) are precomputed; then, as more and more docu-
ments are aggregated in one cell, the cost of query process-
ing increase; when the cost reaches the threshold A, we be-
gin to precompute cells again. This behavior repeats period-
ically, and so that the query processing time vibrates in pe-
riods as | D| increases. Moreover, the larger A is, the more
sharply it vibrates. The query processing time in Cube20 is
the shortest on average and is the most smooth one.

In Figure 3(b), the average query processing time is plot-
ted as a function of the number of dimensions. For similar
reason, Basic increases linearly, but Cube20, Cube60, and

70 4

50 - B Cube20
o u CubsB0
s 50 4
— Cube100
% a0
v}

v 30
i
G 20 -
]
10 -
o
14 12 10 8 6 4 2
of Dimensions in Text Cube
Figure 2. Storage Cost
. 035
[=8 Basic
w 03
i’ == Cube20
E 025 CubeG0
=
g 02 q/=<cube100
2
& 015
=
g 01 - (
o
sy 0.05 - - ——
-
< 5 . . :)
] 500 1000 1500 2000
of Aggregated DocumentsinaCell (|D])
(a) Varying |D|
. 04
H] =#-Basic
Y 035
o =@=Cube20
g 03
— Cube60
F 025
8 ==Cubel00
2 02
o
& 015
3
g o1
:)tn 0.05
0 -+

0 5 10 15

of Aggregating Dimensions ina Query

(b) Varying # of aggregateing dimensions
Figure 3. Query Time

Cubel00 also vibrates a bit.

In both Figure 3(a) and 3(b), the average query process-
ing time in Cube20 is the shortest among Cube20, Cube60,
and Cubel00. Recall Figure 2 in Exp-1, Cube20 requires
the most storage cost, so we have a tradeoff between stor-
age cost and query processing time, and we can control it
by tuning threshold A in algorithm GreedySelect.

4.2 Case Study

A case study in Table 2 shows the utility of text cube.

Dell XPS M1730 is marketed to gamers, but criticized
for its looks, increasing weight and size 2. We roll up
all dimensions except model to *, and slice on model =’
M1730’, obtaining the top 10 most frequent terms in of
pros and cons. It can be seen that the customers basically
agree with Wikipedia, except that customers do not com-
plain much on its looks but care about the high price 3.

Another example is Inspiron 1420 N. which is known

Zhttp://en.wikipedia.org/wiki/Dell_XPS
3From http://www.dell.com/, its price is more than $ 1300.

| [XPS M1730 Inspiron 1420N

pros game great keyboard
work video nice design
amaze display speed

nice love color light
wireless cheap driver
webcam quick speedy

cons || hard expensive battery
problem keyboard carry
game heavy screen need

battery problem gb
hibernate ram virus
button pad ubuntu g

Table 2. Dell XPS M1730 and Inspiron 1420 N

for portable models, Ubuntu OS, 8 colors, but limitation on
hardware capacity *.

5 Conclusion

In this paper, we proposed a novel cube model called
text cube with OLAP operations in dimension hierarchy and
term hierarchy to analyze multi-dimensional text data. It
supports two important measures, term frequency vector TF
and inverted index IV, to facilitate IR techniques. Algo-
rithms are designed to process OLAP queries with the op-
timal processing cost, and to partially materialize the text
cube provided that the optimal processing cost of any query
is bounded. Experimental results on a real dataset show the
efficiency and effectiveness of our text cube model.

6 Acknowledgement

The work was supported in part by NASA grant
NNXO08AC35A, the U.S. National Science Foundation
grants IIS-08-42769 and BDI-05-15813, and Office of
Naval Research (ONR) grant N0O0014-08-1-0565.

References

[1] K. S. Beyer and R. Ramakrishnan. Bottom-up computation
of sparse and iceberg cubes. In SIGMOD Conference, pages

359-370, 1999.
[2] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data

cube: A relational aggregation operator generalizing group-

by, cross-tab, and sub-total. In /CDE, pages 152-159, 1996.
[3] J. Han. Olap, spatial. In Encyclopedia of GIS, pages 809-812.

2008.
[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implement-

ing data cubes efficiently. In SIGMOD Conference, pages

205-216, 1996.
[5] J.Li, H. Zhou, and W. Wang. Gradual cube: Customize profile

on mobile olap. In ICDM, pages 943-947, 2006.
[6] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W.

Cheung. Olap on sequence data. In SIGMOD Conference,

pages 649-660, 2008.
[7] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggrega-

tion for graph summarization. In SIGMOD Conference, pages

567-580, 2008.
[8] Y. Zhao, P. Deshpande, and J. F. Naughton. An array-based

algorithm for simultaneous multidimensional aggregates. In
SIGMOD Conference, pages 159-170, 1997.

“http://en.wikipedia.org/wiki/Dell Tnspiron

